lasciva blog

開発して得た知見やwebビジネスのストック

「ハイパフォーマンス ブラウザネットワーキング」を読んだ

目的、モチベーション

バックエンドのパフォーマンス改善の知識を深めるため。

全体の感想

広範にかつ様々なレイヤーでトピックがあり、バックエンド側に限らずネットワーク全般をカバーしていた。
HTTPやWebSocket, WebRTCなどのプロトコルや、モバイルデバイスを含むクライアント側のネットワークの種類の説明などが紹介されていた。
所謂バックエンドのサーバ改善だけを目的に読むのは微妙だが、トータルでパフォーマンス改善して、ユーザ体験を向上するためなら、網羅的に紹介されていてよかったと思う。
ただし、初版が2014年5月で少し古いので、HTTP2の説明は他の本を参考にした方が良さそう。

目次

概要

今回はマイクロサービスにおけるバックエンドに関連の多かったI部しかまとめてないです。

I部 ネットワークの基礎

1章 レイテンシ・帯域幅入門

1.2 レイテンシを構成する多数の構成要素
種類 説明
伝播遅延 メッセージが送信元から宛先まで移動するためにかかる時間。距離を信号の伝搬速度で割ったもの。
伝送遅延 パケットの全ビットをリンクに載せるまでにかかる時間。パケット長とリンクのデータ転送速度の関数。
処理遅延 パケットヘッダの処理、ビットレベルのエラー検知、パケットの宛先決定にかかる時間。
キューイング遅延 パケットが処理できる状態になる前にキューで待機する時間。
1.3 光の速さと伝播遅延

当然だが、通信速度は光の速さが最大となる。光は地球を1秒間で約7周半できるため十分高速だと思われがちだが、実際の通信で何回か往復するため数秒になり、ユーザとしては不十分な速度となる。
そのため、CDNなどを利用してできるだけ物理的な距離を短くするか、圧縮などでデータ量を減らすことが重要。

2章 TCPの構成要素

2.1 3ウェイハンドシェイク

TCP接続を開始する際に、3ウェイハンドシェイクを行う。

  1. SYN: クライアントは無作為にシーケンス番号xを選び、SYNパケットを送信。他のTCPフラグやオプションが含まれていることもある。
  2. SYN ACK: サーバはxに1を加えてその値を確認応答番号とする。そして自信のシーケンス番号yを無作為に選び、自身のフラグとオプションを付加した上でレスポンスを送信する。
  3. ACK: クライアントはxとyの両方に1を足し、xをシーケンス番号、yを確認応答番号としたACKパケットを送信してハンドシェイクを完了する。

これは数十msかかりコストが高いため、TCPコネクションの再利用の最適化が重要になる。

2.2 輻輳回避と輻輳制御

2.2.1 フロー制御
受信側が処理できないほどの大量のデータを送信しないように、受信ウィンドウサイズ(rwnd)でバッファサイズを指定できる。

2.2.2 スロースタート
クライアントとサーバ間のネットワークの利用状況に応じて、通信量をコントロールした方が効率的に利用できる。
しかしネットワークの状態は絶えず変化し、接続時には利用状況がわからないため、徐々にウインドウサイズを大きくしていくことで、解決する。
輻輳ウインドウサイズは、指数関数的に増加させていく。

そのため、TCP接続を再利用しない場合は、スロースタートしながら処理を開始するために、レイテンシーは大きくなる。

2.2.3 輻輳回避
パケットロスが発生したときに、セグメントを倍数的に減少させる。

2.5 TCPの最適化

サーバ設定のチューニング

  • サーバのカーネルのバージョンを最新にする
  • TCP 初期ウィンドウの増加
  • アイドル後のスロースタートを無効化
  • ウインドウスケーリングを有効にする

アプリケーションの動作のチューニング

  • 不要なデータ送信を除去する
  • 送信データを圧縮する
  • 物理的に近い場所にサーバを設置する
  • TCP接続を再利用

3章 UDPの構成要素

4章 TLS

4.2 TLSハンドシェイク

下記のような流れで、TLSによる接続を確立する。

  1. TCPコネクションを確立
  2. クライアントが平文で動作仕様を送信
  3. サーバがTLSプロトコルのバージョンや暗号スイートを決め、証明書を返す
  4. クライアントがレスポンスに同意し、RSADiffie-Hellman鍵交換プロセスを開始し、セッションのための共通鍵を生成する
  5. サーバはクライアントから送られた鍵交換パラメータを処理し、MACを検証することでメッセージの整合性を確認
  6. クライアントは、サーバからのメッセージを共通鍵で復元してメッセージのMACを検証

4.3 TLSセッション再開(TLS Session Resumption)

TLSハンドシェイクはレイテンシと計算コストが必要となる。これを緩和するための機能が用意されている。

4.3.1 セッションID
サーバがセッションIDとパラメータ情報をキャッシュし、クライアントもセッションIDをキャッシュすることで、暗号スイートと鍵の生成プロセスをスキップして、パケットの往復を一回削れる。ただし、サーバがすべてのクライアントのセッションキャッシュを維持し続ける必要があり、大規模サービスでは複数のサーバ間でセッションを利用できるような工夫が必要。

4.3.2 セッションチケット
セッションIDでのデプロイメントの問題を払拭するために、セッションチケットが公開された。
この仕組みでは、サーバではセッション情報を保存せずに、TLSハンドシェイクの最後で、クライアントにセッションデータを返してクライアントが管理する。このセッション情報はサーバの秘密鍵で暗号化されているため安全。

4.6 TLSレコードプロトコル
4.7 TLSの最適化

4.7.4 TLS False Start
TLSのハンドシェイクの途中から、アプリケーションのデータの送信を行うことで、パケットの往復を減らすことができる。
ハンドシェイクのロジック自体は変更せずに、クライアントがデータを読み取れるようになる鍵の交換をした時点から、データのやり取りを行う。

4.7.6 TLS圧縮

サーバでのTLS圧縮は無効にすべき。
トランスポートレベルのTLS圧縮はコンテンツタイプを識別しないため、画像や動画などすでに圧縮されているデータを更に圧縮しようとする。そのため、二重に圧縮することでCPUを無駄に使用してしまう。

4.7.7 証明書チェーンの長さ

証明書チェーンのサイズを小さくするために、必要のない証明書はチェーンに含めないこと。
また、ルート証明書を含める必要もない。

II部 ワイヤレスネットワークのパフォーマンス

5章 ワイヤレスネットワーク入門

6章 WiFi

7章 モバイルネットワーク

8章 モバイルネットワークの最適化

III部 HTTP

9章 HTTPの歴史

10章 Webパフォーマンス入門

11章 HTTP 1.x

12章 HTTP 2.0

13章 アプリケーション配信最適化

IV部 ブラウザAPIプロトコル

14章 ブラウザネットワーク入門

15章 XMLHttpRequest

16章 Server-Sent Events

17章 WebSocket

18章 WebRTC

次のアクション

「OAuth徹底入門 セキュアな認可システムを適用するための原則と実践 」を読んだ

OAuth徹底入門 セキュアな認可システムを適用するための原則と実践

OAuth徹底入門 セキュアな認可システムを適用するための原則と実践

目的、モチベーション

  • OAuthの仕組みを雰囲気でしか理解していなかったので、理解を深めるため。
    • 普通の認可と違い、何故セキュアなのか。
  • アプリケーションにSNS認証を導入する際に、どのように導入すればセキュアなのかを理解するため。

全体の感想

読み進めていくうちに、OAuthは認証プロトコルではなく移譲プロトコルであるというのが特に衝撃的で、OAuthのことを全く理解していなかったんだなと思った。
実際にコードを書いて簡単だが一連のやり取りを把握できたのが良かった。
また、何故このパラメータがないと脆弱性につながるのかなども詳しく説明してあり、理解も深まりやすかった。
入門書レベルだとは思うがボリュームもあり、OAuthを雰囲気で使っている人にはオススメ。

目次

概要

github.com

英語版はこちら

OAuth 2 in Action

OAuth 2 in Action

  • 作者:Justin Richer,Antonio Sanso
  • 出版社/メーカー: Manning Publications
  • 発売日: 2017/03/18
  • メディア: ペーパーバック

第1章 OAuth 2.0とは何か?そして、なぜ気にかけるべきなのか?

OAuth2.0とは何か?

委譲プロトコルで、アプリケーション(twitterなど)のリソースの所有者に認可されるように許可を求めて、クライアント(twitterのデータを利用しているサービスなど)トークンによって所有者の代わりにアクセスできるようにする仕組み。
認可プロセスや暗号の方法などは定義しておらず、必ず認証がある訳ではなく、認証プロトコルでもない。

クレデンシャルの共有の問題点

  • クライアントが繰り返しパスワードを使うために、平文や可逆暗号でパスワードを保存してしまう
  • クライアントに与えるべきでない権限も付与してしまう

第2章 OAuthダンス - OAuthの構成要素間の相互作用

2.1 OAuth 2.0プロトコルの概要~トークンの取得と使用~

標準的な流れは以下の通り。

  1. リソース所有者はクライアントにリソース所有者の代わりとして振る舞ってほしいことを指示する
  2. クライアントは認可サーバにリクエストをし、そこでリソース所有者にクライアントを認可するかどうかの判断を行わせる
  3. こうすることで、クライアントはクレデンシャルを知らないで済む
  4. リソース所有者はクライアントを許可する
  5. クライアントは認可サーバからトークンを受け取る
  6. クライアントは保護対象リソースにトークンを提示する
2.2 OAuth 2.0における認可付与の詳細

認可コードによる付与(Authorization Code Grant)では、一時的なクレデンシャルである認可コードを使い、トークンを取得する。

  1. リソース所有者がクライアントを許可すると、認可コードとともにクライアントにリダイレクトされる
  2. クライアントは受け取った認可コードを、クライアント自身のクレデンシャルとともに認可サーバに送る
  3. 認可サーバは、認可コードのクライアントと、クレデンシャルのクライアントが一致した場合にトークンを返す(認可コードはrevokeされる)
2.4 トークン、スコープ、認可付与

アクセス・トーク
中身のないただの文字列で、クライアントは内容を知らずに扱うことができる。

スコープ
スペースで区切られた、保護対象リソースでの権限。

リフレッシュ・トーク
新しいアクセス・トークンを取得するのに必要なトークン。アクセス・トークンの期限が切れても、リソース所有者の認証を再度求めずに取得できる。

認可付与
OAuthのプロトコルを介して、アクセス権をクライアントが得る手段、即ちトークンを取得するフローのこと。

2.5 OAuthの構成要素間のやり取り

バック・チャネル・コミュニケーション
リソース所有者やブラウザ以外の、認可サーバやクライアント、保護対象リソースのHTTPのコミュニケーションのこと。

フロント・チャネル・コミュニケーション
サーバとの、ブラウザを介したコミュニケーションのこと。ブラウザを介すため、機密情報は渡らない方がベター。

第3章 シンプルなOAuthクライアントの構築

第4章 シンプルなOAuthの保護対象リソースの構築

第5章 シンプルなOAuthの認可サーバの構築

この3つの章は、サンプルコードを元に実際に簡易なサーバを実装していった。手を動かすとイメージがつかめて良かった。
気になったのは下記。

  • stateパラメータははcallbackを直接叩かれ乗っ取りをされかけたときの防止策
  • Bearerは規約的には大文字小文字は区別しない

第6章 実際の環境におけるOAuth 2.0

6.1 認可における付与方式

6.1.1 インプリシット付与方式

この付与形式では、認可エンドポイントから直接トークンを得る。

クライアントがブラウザ内部に埋め込まれたJavaScriptアプリケーションのような場合、認可コードによる付与を行う際に、認可コードをクライアントに返すとブラウザに認可コードが渡ってしまいクライアント以外も知ってしまうため、メリットがない。
ブラウザアプリケーションの場合、ユーザがいるためトークンが無効になっても再度認証を求められるため、TOFUも維持できる。

6.1.2 クライアント・クレデンシャルによる付与方式

バックエンドの認証などで、リソース所有者が明確に存在しなかったり、クライアント自体がリソース所有者の場合、この付与方式を用いる。
scopeなどを指定して、認可エンドポイントから直接トークンを得る。

6.1.3 リソース所有者のクレデンシャルによる付与方式

リソース所有者のクレデンシャルをクライアントに送り、それを使って認可サーバからアクセストークンを得る方法。
クライアントにクレデンシャルが渡り、アンチパターンなのでできれば避けるべき。

第7章 よく狙われるクライアントの脆弱性

7.2 クライアントに対するCSRF攻撃

仕様ではstateパラメータは必須でないが、CSRF攻撃を防ぐために検証した方が良い。

7.3 クライアント・クレデンシャルの不当な取得

ネイティブ・アプリケーションなどは、デコンパイルされる可能性が0ではないため、クレデンシャルは動的に取得するようにして、各デバイス毎にクライアントIDを管理した方が安全。

7.4 リダイレクトURIの登録

リダイレクトURIは攻撃されやすく、バグも発生しやすいので、完全一致で検証するのがベスト。
サブディレクトリを検証しない場合、CGM型のサイトなどでユーザがページを作成できるときなどに、そのURLを指定されると漏洩の元になる。

  • HTTPリファラー: URLのパラメータにcodeが付与された状態で、攻撃者のページにリダイレクトした場合、imgやscriptを攻撃者のサイトにリクエストすることで、リファラー中のURLから盗まれる。
  • オープンリダイレクト: パラメータの値のURLを検証せずに、そのURLにリダイレクトしてしまうこと。URIフラグメントにトークン情報を含めた状態でリダイレクトすると盗まれる。
7.6 トークンの不正な取得

Authorizationヘッダを利用できず、URLのパラメータに含める場合は攻撃されやすくなるので、注意が必要。

  • access.logなどにパラメータとして書き出される
  • オンライン掲示板などに、ユーザが意図せず貼ってしまう
  • リファラーヘッダにトークンが含まれる

第8章 よく狙われる保護対象リソースの脆弱性

8.2 保護対象リソースのエンドポイントの設計

HTTPヘッダを適切に設定すれば、XSS対策をより安全に行える。

ヘッダ 説明
Content-Type jsonを指定することで、ブラウザがXSSから保護する
X-Content-Type-Options MIMEスニッフィングを防ぐ。
X-XSS-Protection 自動的にXSS攻撃を除外
8.3 トークンのリプレイ攻撃

OAuth2.0ではTLSが前提となっているが、HSTS(HTTP Strict Transport Security)を使えば、サーバ側で安全なHTTPSのみを使うように宣言できる。
使い方は、レスポンスのヘッダに Strict-Transport-Securityを設定する。

第9章 よく狙われる認可サーバの脆弱性

  • 認可コード
    • 一度使われたら、破棄する(URLに含まれるため、ブラウザの履歴などに残ってしまう可能性がある)
    • クライアントが一致するか確認する
  • リダイレクト
    • 絶対に、何の検証もなしにリダイレクトしないこと
    • バグの元なので、redirect_uriは極力完全一致するか検証する
    • エラーを返す際にも、Refererヘッダなどを介して情報漏洩しないように注意する

第10章 よく狙われるOAuthトークンの脆弱性

トークンはシンプルである一方で、盗まれた際には何でもできてしまうため、工夫が必要。

  • 盗まれないように保護
  • 盗まれてしまった際の被害を小さくする
    • クライアント: 必要最低限のscopeのトークンを要求する
    • 認可サーバ: 有効期限を短くする
  • サーバを攻撃されてしまった際の被害を小さくする
    • 認可サーバ: トークンをハッシュ値で保存する
    • リソースサーバ: キャッシュする場合は、一時的なメモリを使用する

第11章 OAuthトーク

11.1 OAuthにおけるトークンとは何か?

OAuthでは、トークンの形式は定められていない。

よく用いられる乱数のトークンは、サイズを小さく保ちつつ、文字列を更に乱雑にすることでセキュアにできる。その一方で、認可サーバと保護対象リソースとの間でデータソースを共有できない場合は、通信処理がボトルネックになったりするなどのデメリットもある。

11.2 JWT(JSON Web Token)

トークンそのものに、必要な情報を詰め込んだものの例として、JWTが紹介されていた。
内部に情報を持つことで、認可サーバを介さずにリソースサーバがトークンの有効性やスコープを確認することができる。

11.2.1 JWTの構造
.で区切られた3つのパート(header, payload, verify signature)の文字列から成る。文字列はJSONオブジェクトをBase64エンコードされている。
トークンが盗まれた場合、デコードされるとpayloadの情報が読み取れてしまうので、HTTPSを使いかつ機密情報はトークンに含めないこと。
Base64エンコードされているのは、トークンを受け渡してる間にエンコードされてしまったり(URLのパーセントエンコーディングなど)して、処理を煩雑にしないための工夫である。

11.3 JOSE(JSON Object Signing and Encryption)

JWTでは、署名のアルゴリズムを指定することができる。
例として、RS256を使うと秘密鍵を認証サーバで管理して、公開鍵をリソースサーバが受け取り検証することでセキュアに検証できる。

トークン内の情報を暗号化するためにJWE(JSON Web Encryption)という仕組みもある。

11.4 トークン・イントロスペクション(Token Introspection)

トークン自身に情報を持たせると、scopeを最新の状態に更新できないなどのデメリットもある。 それを解決する一つが、Token Introspection。 認可サーバに /introspectのようなエンドポイントを用意し、tokenの詳細の情報を取得できるようにして解決するプロトコルである。
ただし、リクエスト数が増えて認可サーバに負荷がかかるので、リソースサーバ側でキャッシュするなどの工夫が必要。

11.5 トークン取り消し(Token Revocation)

ユーザがログアウトしたなど、クライアントが能動的にトークンを無効にしたい場合には、Token Revocationを利用する。
単にアクセストークンとリフレッシュトークンを無効にするだけだが、攻撃されないように、トークンのクライアントとリクエストしてきたクライアントが一致するかの検証を行い、無効であったとしても201を返すこと。401を返すとDoS攻撃が行われ、他のクライアントでトークンが有効であることがわかってしまう。

第12章 動的クライアント登録(Dynamic Client Registration)

スケーラビリティを確保し、クライアントとの信頼関係を築くために動的にクライアントの管理を行いましょうという話だった。

第13章 OAuth2.0を使ったユーザ認証

OAuth 2.0自身は認証プロトコルでないが、認証プロトコルを構築するために用いられることもある。
その例として、OpenID Connectが紹介されていた。

第14章 OAuth2.0を使うプロトコルとプロファイル

OAuth2.0を拡張したプロトコルやプロファイルが紹介されていた。

14.1 UMA(User Managed Access

三者に自分のリソースの利用をクライアントで利用するのを許可する(ex. Aliceが自身のリソースの利用を、Bobに利用許可するとき)を安全に管理するために、UMA(User Managed Access)が利用できる。
UMAでは、自分のリソースポリシーを設定し、Aliceを介さずにトークンを取得できる。また、トークンも第三者である利用者毎に発行できるため、revokeなどの処理も行える。

処理の流れとしては、通常のOAuthに加えて、リソース所有者がポリシーを先に設定し、リソースサーバはトークンが有効な権限を持つか検証しないといけない。

14.2 HEART(HEAlth Relationship Trust)

OAuthは柔軟な反面、相互運用性や互換性の確保が難しい。医療分野などの単一分野を取り扱っている場合、共通のAPIを利用することがよくあり、サーバ同士が連携しやすいように、ガイドラインが利便性が高まる。
その一例として、HEART(HEAlth Relationship Trust)が紹介されていた。

14.3 iGov(international Government assurance)

HEARTと同じように、行政機関で使われることを目指すiGov(international Government assurance)が紹介されていた。
行政機関のシステムは、長期間使用される一方で、システムのアップデートが遅くなったりする傾向もあるため、互換性が担保できるように慎重に策定する必要がある。

第15章 Bearerトークンの次のもの

Bearerトークンはシンプルなため、トークンを奪われると再利用されてしまう。
よりセキュアな所有証明(Proof of Possession:PoP)トークンと、TLSトークン・バインディングが紹介されていた。

OAuth徹底入門 セキュアな認可システムを適用するための原則と実践

OAuth徹底入門 セキュアな認可システムを適用するための原則と実践

「ベゾス・レター:アマゾンに学ぶ14ヵ条の成長原則」を読んだ

目的、モチベーション

twitterで知った。ベゾスが発してる情報源である株主への手紙を読み解いて、成長原則を学ぶというコンセプトが面白そうだったので、読んだ。

全体の感想

Amazon系のビジネス書は、「ワンクリック ジェフ・ベゾス率いるAMAZONの隆盛」や「ジェフ・ベゾス 果てなき野望」など何冊か読んだことがあったり、ネットの記事を読んだりしてたので、めちゃくちゃ目新しいものがあったかというと微妙。頭の中は整理できたり、復習にはなったりした。

ややこしいが、本書の14ヵ条はAmazonが掲げる「Our Leadership Principles」という14項目からなる信条とは別物で、著者が約20年分の株主へのレターからベゾスやAmazonが重視している原則を見出したものなので注意。

メモ

前段として、Amazonにおけるリスクの話があった。
リスクは一般的には避けられるものだが、長期的に正しく進むためや、大きな革新やリターンを得るためには大胆に迅速に進める必要がある。
そのため、ある程度は失敗する前提で学びを得られれば良しとしてリスクを犯すべき。

14ヵ条は以下の通りで、企業文化として有名なものが多かった。

  • 成長サイクル:実験
    • 第1条 「いい失敗」を促す
    • 第2条 大きなアイデアに賭ける
    • 第3条 ダイナミックな発明や革新を実践する
  • 成長サイクル:構築
    • 第4条 顧客にこだわる
    • 第5条 長期的な考え方を採用する
    • 第6条 自分の「弾み車」 を理解する
  • 成長サイクル:加速
    • 第7条 決定は迅速に行う
    • 第8条 複雑なことは単純化する
    • 第9条 テクノロジーで時間を短縮する
    • 第10条 所有者意識を持たせる
  • 成長サイクル:規模の拡大
    • 第11条 企業文化を守る
    • 第12条 高水準を重視する
    • 第13条 重要な項目を計測し、計測項目を疑い、自分の直感を信じる
    • 第14条 常に1日目だと信じる

特に印象に残ったのは、以下。

第4条 顧客にこだわる
ユーザ本位というのは、どのような会社でも同じようなことを掲げるが、Amazonでは顧客に「すごい」と言われるような極端なレベルまでこだわるというのを徹底している。
顧客の問題を解決するのではなく、問題を発生させずに完全に潰すのが仕事。
徹底している一例として挙げられて面白かったのは、オンデマンドの映画を購入した顧客が見た時間帯に、顧客が気づかないレベルでネットワークの状態が少しだけ悪かったことをシステムが検知し、Amazon側から自ら顧客に謝罪と返金の連絡を行った。

第7条 決定は迅速に行う

大きい組織でも迅速に意思決定を行うために、「後戻りできない」ものと「失敗しても辞めたり取り返しのつく」ものの2種類に分類している。
遅くなって手遅れになるよりも、情報不足で間違うことの方を良しとする。

第13条 重要な項目を計測し、計測項目を疑い、自分の直感を信じる
意思決定の際には数字をみて良し悪しの判断を勿論行っているが、スムーズにできる一方で、革新が起こりにくくもなるので数字は疑いもする。

「絵で見てわかるシステムパフォーマンスの仕組み」を読んだ

絵で見てわかるシステムパフォーマンスの仕組み

絵で見てわかるシステムパフォーマンスの仕組み

目的、モチベーション

バックエンドのパフォーマンス改善において、指標となるCPUやメモリ等の基礎の理解を深め、実際の調査方法などが知りたかった。

全体の感想

表紙とタイトルから、図録みたいなものなのかと勝手に連想していたが、いい意味で裏切られた。普通にテキストによる説明がメインで、他の技術書よりもイメージをつかみやすいように絵がたくさんあったという印象。
アルゴリズムやデータ構造、アプリケーション、OS、インフラ、プロジェクトの進め方など、カバー範囲がとにかく広かった。
パフォーマンスのボトルネックの調査方法を知りたいのが目的の一つだったので、OSのコマンドの使い分けなどは特に良かった。
またパフォーマンステストの進め方は目的ではなかったが、私の経験で思ってるよりも時間がかかったり、再現が難しかったり今まであまりうまくいかなかったことが言語化されていて、整理もできて良かった。

少し個人的に残念なのは、2014年に出版された本のためDockerやコンテナ周りの話は触れられてなかった。

目次

概要

【第1章】パフォーマンスの基礎的な考え方

計算量やアルゴリズムの説明だった。知ってる内容だったので割愛。

【第2章】パフォーマンス分析の基本

2.2 必要なパフォーマンス情報とは

2.2.1 「はさみうち」の原則
前後の計測も行わないと、ただのスパイクなのか、何が原因なのかを確認できないので、必ず行うこと。

2.2.2 パフォーマンス情報の3種類

名前 特徴
サマリ形式 一定期間の合計や平均の情報。概況を抑えるのには向いているが、変動を捉えるのには不向き。
イベント記録形式 個々のイベントを逐次記録された情報。詳細な調査には向くが、データ量や負荷が大きくなるので、本番で常に実行するには不向き。
スナップショット形式 ある時点での状況の記録情報。定期的に取得することで、原因調査などが行える。
2.4 OSのコマンド
コマンド 形式 計測点 補足
sar サマリ形式 OSのカーネルからのOS情報 CPU、I/O、メモリなどの概況がわかる。
vmstat サマリ形式 OSのカーネル情報からのOS情報 実行待ちの平均プロセス数、ブロックされているプロセス数などがわかる。
ps スナップショット形式 OSのカーネルで各プロセスの情報 プロセスの状態、CPU時間などがわかる。負荷が高いので高頻度で取得するには向いてない。
netstat サマリ形式/スナップショット形式 ドライバレベル ソケット、ルーティング、インターフェースごとの統計がわかる。
iostat サマリ形式 OSカーネル内部のブロックデバイスレベル
top スナップショット形式 OSレベル OS全体の概況把握に最適。少々負荷が高い。
パケットダンプ(wiresharktcpdumpなど) イベント記録形式 ドライバレベル 負荷が大きく、パフォーマンスに影響が出る。
pstack スナップショット形式 OSから見たコールスタックの情報 何度か取得し、詰まってる処理を特定して、アプリケーションなどの問題を特定する。負荷は低い。
システムコール(straceなど) イベント記録形式 OSから見たプロセスのシステムコール情報 負荷が高い。
プロファイラ サマリ形式 OSから見たプロセスの各関数の処理時間

【第3章】実システムのパフォーマンス分析

用語の説明が多かったので、割愛。

【第4章】パフォーマンスチューニング

4.3 現場で用いられるテクニック

パフォーマンス改善と一口に言っても様々な方法があるが、一覧化されると整理できて良かった。

  • ループの省略、キャッチボールの削減
    • 局所最適に陥られないこと。例えば、DBで何度もINDEXを使った参照をするよりかは、1度のフルスキャンでデータを取得する。
  • 参照頻度の高いデータはキーバリューストア化かハッシュ化する
    • ハッシュのアクセスはO(1)
  • 参照頻度の高いデータは使う場所の近くに置く
    • CPUの内部レベルでも、CDNなどでも。
  • 同期を非同期に変える
  • 帯域制限
  • LRU(Least Recent Used)方式
  • 処理の分割またはロックの粒度の詳細化
  • 不揮発なライトバックのキャッシュの採用
  • マルチレイヤのキャッシュの採用
  • ジャンボフレームと高速ネットワークの採用
    • パケットあたりのデータ量を増やすことでパケット数を減らし、CPU使用量を減らす
  • 負荷分散、ラウンドロビン
  • アフィニティ、バインド、Stickyセッション
    • キャッシュの特性を活かすために局所化する
  • copy on write(COW)
  • ジャーナル、ログ
    • DBへの書き込みなどを一括で行い、パフォーマンスを改善する
  • 圧縮
  • 楽観的ロック
  • カラムナデータベース(Columnar Database)
  • サーバのパフォーマンス設定は初期値=最大値?

【第5章】パフォーマンステスト

この章では、パフォーマンステストの進め方が紹介されていた。
企画段階から、リリースしてから運用するまで、関係者とどのように進めるのかなど。
ややSIerっぽい内容ではあるが、環境構築や実際のテスト時の注意点は大変参考になった。

5.2 よくある失敗:9つのアンチパターン

5.2.1 期間内に終わらない!
本番環境でないと再現しない、再現するための環境構築に時間がかかる、特定の操作で問題発生などで、スケジュール通りに進まない。

5.2.2 パフォーマンスが出ない! パフォーマンス問題が解決できない!
原因究明には、あらゆるレイヤーの知識が求められるため、時間がかかる。

5.2.3 環境差異を考慮しないために問題が発生
インフラやサーバの設定が異なるなど。

5.2.4 負荷シナリオ設計に不備があるために問題が発生

  • 一部の画面操作しか考慮していなかった
  • 長時間滞在して多くの画面を遷移し、セッションに蓄積されて多くのメモリが使用された

5.2.5 バッファ/キャッシュの利用を考慮しないために問題が発生
特定のデータやパターンを集中的にテストしたために、キャッシュが乗った状態で十分に検証できてなかった。

5.2.6 シンクタイムを考慮しないために問題が発生
本番環境でユーザが複数の操作する際にテスト時よりも時間がかかり、HTTPのコネクション数やセッションの維持数に影響が出てしまう。

5.2.9 テストに時間がかかる
インフラの環境構築、計測や監視の設定、負荷生成シナリオスクリプト、本番同等のデータ作成、調査の時間など。

5.3 パフォーマンステストの種類

開発段階に応じて、できる種類のテストが異なる(インフラ、アプリケーションなどの単体しか行えないなど)。
また、知りたいパフォーマンスの種類によっても分類できる。

  • 狭義のパフォーマンステスト: 要件が満たせるか
  • 限界パフォーマンス: 上限の調査
  • 縮退パフォーマンス: 一部のノードが落ちてしまったときのテスト
  • 障害テスト: 障害が起こってしまった際のエラーの確認や対応の確認など
5.4 プロジェクト工程で考えるパフォーマンステスト

5.4.1 要件定義
スループット」、「レスポンスタイム」、「ユーザ多重度」の3つは必ず設定すること。これらは互いに依存し合うため、一つ改善しても他が悪化する可能性があるため。

【第6章】仮想化環境におけるパフォーマンス

仮想化をすることによって、CPUの命令の変換やメモリのマッピングなどの処理が入るため、遅くなる。
また、元のOSのCPU数より多くのCPUを使用するとオーバーヘッドが生じるので、チューニングが必要になる。

【第7章】クラウド環境におけるパフォーマンス

ざっと読んだが、今回の目的とは関係ないので割愛。

次のアクション

詳解 システム・パフォーマンスを読む。

絵で見てわかるシステムパフォーマンスの仕組み

絵で見てわかるシステムパフォーマンスの仕組み

「[試して理解]Linuxのしくみ」を読んだ

[試して理解]Linuxのしくみ ~実験と図解で学ぶOSとハードウェアの基礎知識

[試して理解]Linuxのしくみ ~実験と図解で学ぶOSとハードウェアの基礎知識

目的、モチベーション

バックエンドのパフォーマンス改善において、指標となるCPUやメモリ等の基礎の復習をしたかった。

全体の感想

サブタイトルにある通り、実験と図解を重視されており、理解しやすかった。
OS周りはとっつきにくく、今まで教科書的な本を読んだことがあったが、頭には入りにくかったりイメージしにくかったが、こちらの本は図がとにかく多いのが良かった。
あやふやだった点を整理することもでき、理解しやすく良書だったが、今回求めてたレベル感ではなかった。1,2年目のときに読みたかった。
OS周りの1冊目の入門書としてや、理解を整理したいときにオススメです。

気になったところ

第2章 ユーザモードで実現する機能

コマンド

コマンド 説明
strace システムコールの呼び出しの詳細が見れる
sar CPU時間の割合の詳細が見れる

第5章 メモリ管理

メモリに関する統計情報

統計情報の取得には、freeコマンドを用いる。

フェールド名 説明
total 全メモリの量
free 見かけ上の空きメモリ(詳しくはavailable)
buff/cache バッファキャッシュ、及びページキャッシュが利用するメモリ。システムの空きメモリが減少してきたら、カーネルによって解放される。
available 実質的な空きメモリ。freeフィールドの値に、空きメモリがたりなくなってきたら、解放できるカーネル内メモリ領域のサイズを足したもの。

仮想記憶
プロセスが物理アドレスを直接扱うと、プロセス間で干渉したり、連続したアドレスが取得できない場合に処理が煩雑になってしまう。
この問題に解決するために、仮想記憶を介して、仮想アドレスを扱う。仮想記憶はページテーブルと呼ばれる、仮想アドレスと物理アドレスのマップングした対応情報をカーネルが使うメモリ内保存される。

デマンドページング
メモリはプロセスが生成された際に割り当てられる。これだとメモリが無駄に割り当てられる可能性がある。
デマンドページングを用いれば、仮想アドレスは最初に割り当てて、物理メモリは実際に使用される際に割り当てることで、改善できる。

第7章 ファイルシステム

ファイルシステムの不整合
システムの電源が処理途中に落ちてしまったりして、ファイルシステムのデータに不整合が生じる可能性がある。
不整合を防ぐ代表的なものは、「ジャーナリング」と「コピーオンライト」の2つの方式がある。

ジャーナリング
この手法では、下記のように処理内容を別のメタデータで保存することで防ぐ。

  1. 処理に必要なアトミック処理の一覧を、いったんジャーナル領域に書き出す(この一覧をジャーナルログと呼ぶ)。
  2. ジャーナル領域の内容に基づいて、実際にファイルシステムの内容を更新する。

1つ目の処理の途中で終わった場合はメタデータを破棄し、2つ目の処理の途中で終わった場合は再実行することで、不整合を解消できる。

コピーオンライト
この手法では、更新されるデータを別の場所にすべて書き込んでからリンクを張り替えることで防ぐ。
処理の途中で終わった場合は、再起動時にデータを削除することで、不整合を解消できる。

第8章 ストレージデバイス

HDDの性質上、ハードウェアがレイテンシーボトルネックになる。
そのため、シーケンシャルにデータを配置し、できるだけ多くのデータを一度に取得することで、パフォーマンスの向上が期待できる。

I/Oスケジューラ

ブロックデバイスへのアクセス要求を一定期間溜めて、下記のような加工を行ってから、デバイスドライバにI/O要求をすることで、I/O性能の向上を目指す。

  • マージ: 複数の連続するセクタへのI/O要求を1つにまとめる。
  • ソート: 複数の不連続なセクタへのI/O要求をセクタ番号順に並び替える。

次のアクション

低レイヤーの理解が欠かせないなと思ったので、そちらの本とかを調査しつつ、もう1冊入門レベルの本(絵で見てわかるシステムパフォーマンスの仕組み)を買ったので読む。 あとは、積読中の詳解 システム・パフォーマンスを読む。

[試して理解]Linuxのしくみ ~実験と図解で学ぶOSとハードウェアの基礎知識

[試して理解]Linuxのしくみ ~実験と図解で学ぶOSとハードウェアの基礎知識